• Users Online: 409
  • Print this page
  • Email this page


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 13-16  

Beta-catenin expression in psoriasis


1 Departments of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia, Egypt
2 Department of Pathology, Faculty of Medicine, Menoufia University, Menufia, Egypt
3 Shibin EL-Kom Teaching Hospital, Shibin Al Kawm, Egypt

Date of Web Publication8-Jan-2015

Correspondence Address:
Dr. Mohamed Abd El-wahed Gaber
Department of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2229-5178.148923

Rights and Permissions
   Abstract 

Background: Psoriasis is a common inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation. Beta-catenin participates in intercellular adhesion. Catenins are proteins found in complexes with cadherin cell adhesion molecules of cells. The role of catenin in regulating keratinocyte stem cell differentiation and hair follicle morphogenesis has been extensively reported. Aims and Objectives: is to study β-catenin expression in lesional and non-lesional psoriatic skin to throw light upon its possible role in the pathogenesis of psoriasis. Materials and Methods: Biopsies were taken from 20 patients with psoriasis vulgaris and from 10 normal controls. The distribution of Beta catenin was investigated using polycolonal rabbits B-catenin antibody-1 by immunohistochemical method. Results: In this study membranous β-catenin expression was significantly demonstrated in the control group then the non-lesional areas in comparison to the lesional areas (P < 0.001). Nuclear β-catenin staining expression was significantly more demonstrated in lesional and non-lesional areas in comparison to the control cases (P < 0.001). Conclusions: The down regulation of membranous β-catenin expression in lesional psoriatic skin might reflect a useful phenotypic marker of hyperprolifration of keratinocytes in psoriasis. Moreover, the mild down regulation of membranous β-catenin expression in non lesional psoriatic skin may provide clues about incipient structural abnormalities in the pathogenesis of psoriasis, providing an early diagnostic indicator for evolution to a generalized form of the disease. Nuclear β-catenin expression was not found in the control group but was demonstrated in lesional and moderately in non-lesional reflecting its role in kerationcyte proliferation.

Keywords: Beta-catenin, psoriasis, pathogenesis-immunohistochemical


How to cite this article:
Gaber MA, Kandil MA, El-Farargy SM, Galbet DA. Beta-catenin expression in psoriasis. Indian Dermatol Online J 2015;6:13-6

How to cite this URL:
Gaber MA, Kandil MA, El-Farargy SM, Galbet DA. Beta-catenin expression in psoriasis. Indian Dermatol Online J [serial online] 2015 [cited 2019 Jul 17];6:13-6. Available from: http://www.idoj.in/text.asp?2015/6/1/13/148923


   Introduction Top


Psoriasis is a common inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation, angiogenesis, immune activation, and inflammation. [1],[2] Although there is evidence for immune activation with lymphocyte infiltration in the psoriatic epidermis, there also exists evidence of primary keratinocyte defects. [3] In the psoriatic epidermis, proteins that are expressed in the early stage of keratinocyte differentiation such as keratinocyte transglutaminase are expressed earlier and in a greater amount. [4] In contrast, the expression of proteins that are usually expressed in the later stages of kertinocyte differentiation such as filaggrin are downregulated in the epidermis of psoriatic plaques. [5] There is accumulating evidence that proteins that mediate intracellular adhesions are involved in keratinocyte differentiation. [6] One candidate for this is beta-catenin (β-catenin) a 94-kDa protein that participates in intercellular adhesion, β-catenin links E-cadherin to the actin cytoskeleton through alpha-catenin. [7] Catenins are proteins found in complexes with cadherin cell adhesion molecules of cells. The first two catenins that were identified became known as α-catenin and β-catenin. Alpha-catenin can bind to β-catenin and can also bind actin. β-catenin binds the cytoplasmic domain of some cadherins. [8] Overexpression of the basal layer cadherins in suprabasal epidermis leads to increased cytoplasmic activity of β-catenin and increased β-catenin transcriptional activation. This overexpression of the basal layer cadherins results in abnormal keratinocyte differentiation. The role of β-catenin in regulating keratinocyte stem cell differentiation and hair follicle morphogenesis has been extensively reported. Doglioni et al. [9] studied β-catenin in human skin tumors and noted that β-catenin was occasionally present in both nuclear and cytoplasmic locations in the basal cells, scattered differentiated keratinocytes and luminal cells of the sebaceous glands. To gain an insight into the role of β-catenin on the regulation of keratinocytes and further investigate the pathogenesis of psoriasis, we compared the expression of β-catenin in normal human and psoriatic skin.


   Materials and Methods Top


This study was carried out in 20 psoriasis vulgaris patients with 10 non-psoriatic subjects as controls. These patients were selected randomly from the dermatology outpatient clinic, Faculty of Medicine, Menoufia University and Sheibin El-Kom Educational Hospital during the period from April 2009 to June 2010. All patients instructed to stop all forms of medication one month prior to optaining a skin biopsy. Patients were subjected to the following: History taking and clinical examination. Two skin biopsies were taken - one from the representative psoriatic lesion and the other from nonlesional skin under local xylocaine anesthesia. The diagnosis of psoriasis was based on both clinical and histopathological examination by hematoxylin and eosin stain. Informed consent was obtained from all patients. This study was approved by the Ethics Committee of Menoufia University.

Immunohistopathological

The improved biotin-streptavidin amplified detection system was used in the work. The primary antibody was rabbit polyclonal antibody (0.1 ml) (Lab-vision, Westinghouse, USA).

Interpretation of beta-catenin expression

Beta-catenin expression was assessed according to:

  • Intensity: Weak (+) moderate (++) or strong expression (+++)
  • Cell counting: The number of β-catenin positive nuclei and total nuclei in the upper half of the suprabasal region were counted in four individual fields from each biopsy specimen. Then the percent positivity was calculated. For further statistical analysis, cases were divided into two groups: Suprabasal nuclear β-catenin staining <50%, and >50%
  • Location: Membranous or nuclear location of expression.


Statistical analysis

Data was collected and statistically analyzed using Statistical Package (IBM Corporation) for Social Sciences version 9 program and StatView software (IBM Corporation). The following statistical measures were employed:

  • Arithmetic mean (X) for central tendency
  • Percentage (%). B-Analytic statistics:
    • Student's t-test to compare two quantitative variables
    • Chi-square test (χ2 ) to compare between qualitative variables P < 0.05 was considered as statistically significant (S).



   Results Top


The age of the patients ranged from 12 to 75 years with a mean age 49.7 ± 15.2 years. Among 20 patients suffering from psoriasis, 8 were males and 12 were females. The duration of the disease varied from 6 months to 19 years with a mean of 5.67 ± 0.5 years. In all clinically diagnosed patients, histopathology revealed parakeratosis, absent granular cell layer, Munro microabscesses, acanthosis, spongiosis, and papillomatosis in the epidermis. Dermal capillary dilatation and inflammatory cells were present in all cases and edema in some cases [Figure 1]a and b.
Figure 1: (a) Psoriasis lesion with Munro microabscess in psoriasis (H and E, ×200). (b) Psoriasis lesion with epidermal, parakeratosis, acanthosis, spongiosis, absent granular cell layer and dermal capillary dilatation and inflammatory cells (H and E, ×400)

Click here to view


Immunohistochemical results of beta-catenin staining expression

In the present study, we made a comparative study of the structural organization of the epidermis and in particular the intercellular junctions between lesional and nonlesional skin of psoriasis patients. The presence and distribution of β-catenin was analyzed by immunohistochemistry of normal skin, and lesional and nonlesional psoriatic skin. In the normal epidermis β-catenin was detected solely on the cell membrane of the basal cells and lower spinous cells [Table 1], [Figure 2]a. This protein showed a continuous well defined distribution at the borders of these cells. In nonlesional psoriatic skin, there were a few suprabasal cells showing strong nuclear β-catenin expression [Table 2], [Figure 2]b. In lesional psoriatic skin, there was a positive nuclear suprabasal β-catenin expression and negative β-catenin expression in parakeratotic cells [Table 2], [Figure 3]a. There was a strong nuclear with membranous β-catenin expression in psoriatic skin [Figure 3]b. At the junction between nonlesional and lesional skin there was membranous β-catenin expression in nonlesional skin and both membranous and nuclear β-catenin expression in lesional psoriatic skin [Figure 4]a. In nonlesional psoriatic skin, there was a membranous β-catenin expression along with a positive dermal inflammatory component [Figure 4]b. There was positive nuclear and cytoplasmic β-catenin expression in normal hair follicles [Figure 4]c.
Figure 2: (a) Skin of a normal control showing membranous beta-catenin (β-catenin) staining expression and few suprabasal nuclear stains (IPS, ×200). (b) Few strong nuclear suprabasal β-catenin staining expression in nonlesional skin of psoriasis (Immunoperioxedase stain, ×200)

Click here to view
Figure 3: (a) Nuclear suprabasal beta-catenin (β-catenin) staining expression in all layers of epidermis except the parakeratotic and cornified layers of a psoriasis lesion (Immunoperioxedase stain, ×400). (b) Strong nuclear with membranous β-catenin expression and negative expression in the parakeratotic layer of a psoriasis lesion (Immunoperioxedase stain, ×400)

Click here to view
Figure 4: (a) Junction between nonlesional (right) and lesional (left) skin of psoriasis showing only membranous staining (nonlesional) while both membranous and nuclear beta-catenin (β-catenin) expression is seen in lesional skin (IPS, ×400). (b) Membranous β-catenin expression together with positive dermal inflammatory components in nonlesional skin of psoriasis (Immunoperioxedase stain, ×200). (c) Nuclear and cytoplasmic β-catenin expression in normal hair follicle matrix cell (Immunoperioxedase stain, ×400)

Click here to view
Table 1: Comparison between membranous beta-catenin staining expression in control, and lesional and nonlesional skin of psoriasis

Click here to view
Table 2: Comparison between suprabasal nuclear beta-catenin staining expression in controls, and lesional and nonlesional skin of psoriasis

Click here to view



   Discussion Top


Catenins are cytoplasmic proteins alpha, beta, gamma, and p120 proteins. They play an important role in the maintenance of normal tissue architecture. [10] Catenins are cell-cell adhesion molecules that also maintain intracellular adhesiveness through cytoplasmic catenin proteins that bind the microfilaments to the cytoskeleton. [11] β-catenin is not required for keratincoyte proliferation, but has been shown to regulate keratinocyte stem cells and hair follicle morophogenesis. [12] With regard to membranous β-catenin staining expression, it was significantly demonstrated in the control group and nonlesional areas in psoriatics as compared to lesional areas in psoriatics. This reflects its role of β-catenin as an adhesion molecule in uninvolved and normal skin. Nuclear β-catenin staining expression was significantly demonstrated in lesional and nonlesional skin of psoriatics as compared to controls. This finding agreed with previous work done by Stojadinovic et al., [13] who studied the role of β-catenin in the inhibition of epithelization and wound healing. They did not find any nuclear β-catenin in normal epidermis. Furthermore in the study done by Butz and Larue, [14] it was found that β-catenin was detected only on the cell membrane of the normal epidermis and normal hair follicles with no nuclear β-catenin staining detected. Our findings are in agreement with those of Hampton et al., [15] who found increased nuclear β-catenin in suprabasal lesional psoriatic epidermis. Some nuclear β-catenin was also detected in nonlesional psoriatic skin, but much less than in lesional psoriatic skin. The distribution of β-catenin in the membrane of normal cells more than in the nuclear location may be due to its role in the establishment and regulation of adherens junctions by interaction with E-cadherin through alpha catenin with the actin cytoskeleton. [15] Furthermore, some studies suggest that β-catenin may be translocated from the nucleus back to the cell membrane, presumably through a soluble, cytosolic intermediate state. [16] Watt and Collins, [17] found the same result in their study of the role of nuclear β-catenin in colorectal tumors. Watabe and Miyazono, [17] studied nuclear localization of β-catenin in the hair matrix cells and differentiated keratinocytes. They found less nuclear β-catenin than membranous β-catenin in normal skin cells. Zhou et al., [18] showed a significant increase in nuclear β-catenin within the suprabasal layers in the involved psoriatic epidermis. Also, Zhou et al., [18] observed a marked decrease in membranous β-catenin at the same level as increased in the nuclear β-catenin. They suggested that in involved suprabasal psoriatic epidermis, an excess amount of free unphosphrylated β-catenin enters the cytoplasm and subsequently translocates to the nucleus. Zhou et al., [18] showed in their study that there was no significant increase in the expression of β-catenin in both membranous and nuclear locations in nonlesional suprabasal cells of psoriatics. Normal skin and the uninvolved psoriatic epidermis might transcriptionally active β-catenin released into the cytoplasm that would likely be rapidly targeted for ubiquitination to prevent abnormal signaling events. This leads to little nuclear β-catenin in uninvolved or normal suprabasal epidermis. [18] In a study done by Li et al., [19] who studied the expression of E-cadherin and β-catenin in the lesional skin of patients with active psoriasis, there was downregulation of β-catenin expression, which was found in the granular layer and basal layer of the psoriatic lesions only.


   Conclusion Top


In normal control group β-catenin was mainly demonstrated as membranous pattern of expression; this reflects its role as an adhesion molecule. The downregulation of membranous β-catenin expression in lesional psoriatic skin suggests that it could be a useful phenotypic marker for the hyperprolifration of keratinocytes in psoriasis. Moreover, the mild downregulation of membranous β-catenin expression in nonlesional psoriatic skin may provide clues about impending structural abnormalities in the pathogenesis of psoriasis, providing an early diagnostic indication for evolution to a generalized form of the disease. Nuclear β-catenin expression was not found in the control group but demonstrated in lesional and moderately in nonlesional skin of psoriatics reflecting its role in kerationcyte proliferation. The nuclear and cytoplasmic expression of β-catenin in normal hair follicle provides evidence suggesting that it plays an important role in keratinocyte differentiation.

 
   References Top

1.
Griffiths CE, Voorhees JJ. Psoriasis, T cells and autoimmunity. J R Soc Med 1996;89:315-9.  Back to cited text no. 1
    
2.
Louden BA, Pearce DJ, Lang W, Feldman SR. A Simplified Psoriasis Area Severity Index (SPASI) for rating psoriasis severity in clinic patients. Dermatol Online J 2004;10:7.  Back to cited text no. 2
    
3.
Ghorpade A. Linear naevoid psoriasis along lines of Blaschko. J Eur Acad Dermatol Venereol 2004;18:726-7.  Back to cited text no. 3
    
4.
Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA. Transglutaminase function in epidermis. J Invest Dermatol 2005;124:481-92.  Back to cited text no. 4
    
5.
Iizuka H, Takahashi H, Honma M, Ishida-Yamamoto A. Unique keratinization process in psoriasis: Late differentiation markers are abolished because of the premature cell death. J Dermatol 2004;31:271-6.  Back to cited text no. 5
    
6.
Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483-7.  Back to cited text no. 6
    
7.
Watt FM, Collins CA. Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol 2008;73:503-12.  Back to cited text no. 7
    
8.
Weis WI, Nelson WJ. Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 2006;281:35593-7.  Back to cited text no. 8
    
9.
Doglioni C, Piccinin S, Demontis S, Cangi MG, Pecciarini L, Chiarelli C, et al. Alterations of beta-catenin pathway in non-melanoma skin tumors: Loss of alpha-ABC nuclear reactivity correlates with the presence of beta-catenin gene mutation. Am J Pathol 2003;163:2277-87.  Back to cited text no. 9
    
10.
Hardman MJ, Liu K, Avilion AA, Merritt A, Brennan K, Garrod DR, et al. Desmosomal cadherin misexpression alters beta-catenin stability and epidermal differentiation. Mol Cell Biol 2005;25:969-78.  Back to cited text no. 10
    
11.
Shirakata Y. Regulation of epidermal keratinocytes by growth factors. J Dermatol Sci 2010;59:73-80.  Back to cited text no. 11
    
12.
Korswagen HC, Herman MA, Clevers HC. Distinct β-catenins mediate adhesion and signaling. Journal of Cell Biology 2006;122:456-89.  Back to cited text no. 12
    
13.
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, et al. Molecular pathogenesis of chronic wounds: The role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol 2005;167:59-69.  Back to cited text no. 13
    
14.
Butz S, Larue L. Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun 1995;3:337-52.  Back to cited text no. 14
    
15.
Hampton PJ, Ross OK, Reynolds NJ. Increased nuclear beta-catenin in suprabasal involved psoriatic epidermis. Br J Dermatol 2007;157:1168-77.  Back to cited text no. 15
    
16.
Armstrong DD, Wong VL, Esser KA. Expression of beta-catenin is necessary for physiological growth of adult skeletal muscle. Am J Physiol Cell Physiol 2006;291:C185-8.  Back to cited text no. 16
    
17.
Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 2009;19:103-15.  Back to cited text no. 17
    
18.
Zhou S, Matsuyoshi N, Liang SB, Takeuchi T, Ohtsuki Y, Miyachi Y. Expression of T-cadherin in basal keratinocytes of skin. J Invest Dermatol 2002;118:1080-4.  Back to cited text no. 18
    
19.
Li ZX, Ji FP, Peng ZH, Wang K. Expression of E-cadherin, beta-catenin and cyclin D1 in epidermal skin lesions of patients with active psoriasis vulgaris. Journal of Cell Biology 2008;28:545-7.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Integrative methylome and transcriptome analysis to dissect key biological pathways for psoriasis in Chinese Han population
Lili Tang,Yuyan Cheng,Caihong Zhu,Chao Yang,Lu Liu,Yuanjing Zhang,Leilei Wen,Xuejun Zhang,Fusheng Zhou,Sen Yang
Journal of Dermatological Science. 2018;
[Pubmed] | [DOI]
2 Increased ßTrCP are associated with imiquimod-induced psoriasis-like skin inflammation in mice via NF-?B signaling pathway
Ruilian Li,Juan Wang,Xin Wang,Jun Zhou,Mei Wang,Huiqun Ma,Shengxiang Xiao
Gene. 2016; 592(1): 164
[Pubmed] | [DOI]
3 New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis
R Prieto-Pérez,G Solano-López,T Cabaleiro,M Román,D Ochoa,M Talegón,O Baniandrés,J L López-Estebaranz,P de la Cueva,E Daudén,F Abad-Santos
The Pharmacogenomics Journal. 2016;
[Pubmed] | [DOI]
4 PGRN Suppresses Inflammation and Promotes Autophagy in Keratinocytes Through the Wnt/ß-Catenin Signaling Pathway
Rong Tian,You Li,Xu Yao
Inflammation. 2016;
[Pubmed] | [DOI]
5 Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs
Yin-Ku Lin,Sien-Hung Yang,Chin-Chuan Chen,Hsiao-Ching Kao,Jia-You Fang,Michel Simon
PLOS ONE. 2015; 10(9): e0137890
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1322    
    Printed30    
    Emailed0    
    PDF Downloaded341    
    Comments [Add]    
    Cited by others 5    

Recommend this journal